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Abstract—The number and scale of data centers explode
with the dramatically surging demand for cloud computing
services, resulting in huge electricity consumption as well as
an enormous impact on sustainability. While numerous efforts
have been dedicated to decreasing the carbon footprint of data
centers, there is a surprising and also embarrassing lack of
attention to the enormity of data center water consumption
despite its emergence as a critical concern for future sustain-
ability. In this paper, we take the first step towards the data
center water efficiency. We first identify two characteristics of
data center water efficiency: water efficiency varies by location
and also over time. Then, by exploiting these characteristics, we
propose a novel geographical load balancing (GLB) algorithm,
called GLB for Water Sustainability (GLB-WS), which dynam-
ically schedules workloads to water-efficient data centers for
improving the overall water usage effectiveness (an emerging
metric for quantifying data center water efficiency) while
satisfying the electricity cost constraint. We also perform a
trace-based simulation study to validate the analysis. The result
shows that compared to the state-of-the-art cost-minimizing
GLB, GLB-WS significantly improves the water efficiency (by
60%) and reduces the water consumption (by 51%).

Keywords-Data center, Geographic load balancing, Sustain-
ability, Water efficiency

I. INTRODUCTION

The emergence of a plethora of Internet and cloud services
has been constantly urging service providers to expand the
number and scale of data centers, resulting in a huge demand
for electricity as well as a profound impact on the existing
ecosystem. In light of the serious sustainability concerns,
tremendous efforts have been dedicated to decreasing the
energy consumption as well as carbon footprints of data
centers (see, e.g., [15], [17], [18] and references therein).

While reducing carbon footprint is clearly essential for
sustainability, an equally, if not more, important aspect of
data center sustainability is water footprint. Just as carbon
footprint is embedded in electricity energy (e.g., produced
by coal) and attributed to data centers, data centers are
also held accountable for the enormous water consumption
associated with electricity generation (i.e., evaporated water
during steam condensation) [19], [24]. A recent study shows
that even without considering the water usage in hydro-
electricity, 1.8 liters of water is consumed for producing 1
kilowatt hour (KWh) of electricity on average in the U.S.
[19], [24]. In addition to the indirect water consumption
incurred on the energy source side, data centers also directly

consume a significant amount of on-site water (mostly for
cooling systems): e.g., it is reported that the U.S. National
Security Agency’s massive data center in Utah consumes 1.5
million gallons of cooling water each day [20]. Combining
both source-side and on-site water consumption [24], data
centers’ water footprint requires immediate attention, as
urged by industry consortium and public media (e.g., [5],
[24]). Nonetheless, despite its emergence as an extremely
important concern in sustainability, water efficiency of data
centers has been embarrassingly long-neglected, thereby
motivating us to take the first step to rigorously address the
increasingly critical water issue in data centers.

The extensively-researched energy-efficient techniques
(e.g., [14], [17]) might seem to be sufficient for reducing wa-
ter footprints, but they are far from being adequate because
they fail to incorporate the temporal and spatial diversities
of data center water efficiency: as specified in the next
section for the first time, water efficiency (quantified in terms
of water consumption for each kWh of IT energy) varies
significantly by location and also over time. Thus, the total
water footprint can be effectively reduced by appropriately
deciding “where” and “when” to process workloads, while
the total energy consumption would not be affected. More
recently, large IT companies have begun to reduce direct on-
site cooling water consumption via facility innovation: e.g.,
using recycled/industry water or seawater instead of potable
water, and directly using outside cold air as the cooling
mechanism [2], [6]. These engineering-based approaches,
however, suffer from several limitations. First, they require
appropriate climate conditions and/or desirable locations
that are not applicable for all data centers (e.g., “free air
cooling” is ideally suitable in cold areas such as Dublin
where Google has one data center [2]). Second, they do not
address, and may even increase, indirect off-site water con-
sumption (e.g., on-site facilities for treating industry water or
seawater save freshwater but may consume more electricity
[23]). Last but not least, some of these techniques, such as
building water treatment facilities, often require substantial
capital investments that may not be affordable for all data
center operators.

In this paper, by exploiting temporal and spatial diver-
sities of water efficiency, we propose a novel geographi-
cal load balancing (GLB) approach, called GLB for Wa-
ter Sustainability (GLB-WS), which dynamically schedules
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workloads to water-efficient data centers for improving the
overall water efficiency while satisfying the electricity cost
constraint. Our approach is software-based and fundamen-
tally differs from the existing engineering-based techniques
that focus on facility innovation. We also perform a trace-
based simulation study to complement the analysis. The
result is consistent with our analysis: it shows that GLB-
WS can effectively direct workloads from water-consuming
data centers to water-efficient ones and that, compared to
the state-of-the-art cost-minimizing GLB approach, GLB-
WS significantly improves the water efficiency (by ap-
proximately 60%) and reduces the water consumption (by
approximately 51%).

In summary, the specific goal of this paper is to optimize
the water efficiency using GLB while satisfying the elec-
tricity cost constraint. To our best knowledge, this paper
makes the first step towards optimizing water efficiency
via workload management in data centers. Compared to
the existing studies (and in particular, GLB techniques
[15], [16], [18], [21], [22], [25]), our research on water
efficiency provides an important, unique and complementary
perspective to the existing data center research, and we take
the position that incorporating water efficiency is essential
in future research efforts.

The rest of this paper is organized as follows. Section II
provides a brief description and two characteristics of data
center water usage. Section III describes the model. In
Section IV, we present the problem formulation and develop
our algorithm, GLB-WS. Section V provides a simulation
study. Related work is reviewed in Section VI, and finally,
concluding remarks are offered in Section VII.

II. WATER CONSUMPTION IN DATA CENTERS

In this section, we provide a brief background for data
center water consumption, introduce an emerging metric
for quantifying water efficiency, and also identify two key
characteristics of water efficiency in data centers.

A. Water consumption

We would like to first draw the readers’ attention to
the subtle difference between water withdrawal and wa-
ter consumption. The former refers to getting water from
somewhere (e.g., public water facilities), whereas the latter
refers to “losing” water (e.g., into the environment via
evaporation) and producing waste water (e.g., into sewage
systems1) [24]. In this paper, we focus on water consumption
(also interchangeably referred to as water usage wherever
applicable) which bears an immediate impact on the fresh
clean water availability.

In general, data centers consume water both directly and
indirectly [24].

1Treating waste water may be energy-consuming and hence also indi-
rectly “consumes” fresh clean water [19].

Figure 1. Direct WUE of Facebook’s data center in Prineville, OR (Feb.
27 to May 28, 2013) [6].

∙ Direct water consumption: Cooling systems (especially
water-cooled chiller systems that employ evaporation as the
heat rejection mechanism) in data centers use water directly.
For example,2 even with outside air cooling, Facebook’s
water efficiency is still 0.22L/KWh (for cooling systems)
in its latest data center in Prineville, OR [6], whereas eBay
uses 1.62L/kWh (as of May 29, 2013) [4].
∙ Indirect water consumption: Indirect water usage stem-

s from the process of thermoelectricity generation that
employs evaporation for cooling and hence consumes an
astonishing amount of water [6], [19]. While certain types
of electricity energy (e.g., by solar photovoltaics and wind)
consume virtually zero water, “water-free” electricity only
takes up a very small portion in the total electric generation
capacity (e.g., less than 10% in the U.S. [19]). Moreover,
although much of the water withdrawn by power plants for
steam condensing eventually returns to the system (hence,
not considered as “consumed”), a non-negligible fraction
of the withdrawn water is “lost/consumed” by evaporation:
e.g.,, the U.S., the national average water consumption
is 1.8L/kWh (which is also referred to as Energy Water
Intensity Factor, or EWIF) [19], [24].

Adding up direct and indirect water consumption, data
centers are increasingly “thirsty” for water and the net water
consumption requires immediate attention [24].

B. Measuring water efficiency

To evaluate the water efficiency, Green Grid has recently
developed a new metric, called water usage effectiveness
(WUE), defined as [24]

WUE =
Direct Water Usage + Indirect Water Usage

IT Equipment Energy
. (1)

Note that the less WUE, the more water efficient a data
center is, and theoretically, the minimum WUE is zero
(L/KWh).

C. Characteristics of data center water efficiency

Data center water efficiency exhibits both spatial and
temporal diversities, as specified below.
∙ Spatial diversity: Both direct and indirect WUEs demon-

strate a significant variation across different geographic
locations. For example, Fig. 2(b) shows the spatial diversity

2To our best knowledge, as of June 10, 2013, Facebook and eBay are
the only two companies reporting data center water usage information [4],
[6].
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(a) California electricity fuel mix
on June 16&17, 2013 [1]
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(b) State-level EWIF versus CO2

emissions in the U.S. [3], [24]

Figure 2. California electricity fuel mix and EWIF versus carbon
emissions.

of the average EWIF in state level (because some states
use more water-efficient technologies or produce more so-
lar/wind electricity, while other states produce more water-
consuming thermal and nuclear electricity). By comparing
the direct WUEs (only for cooling systems) of Facebook’s
data centers in Prineville, OR and Forest City, NC, we also
notice a significant variation between the two locations (due
to different cooling technologies). Such spatial diversity in
direct WUE can also be seen by comparing the direct WUEs
of Facebook’s and eBay’s data centers (i.e., 0.22 versus 1.62
L/KWh) [4], [6].
∙ Temporal diversity: Fig. 1 shows a 90-day history

of average daily (direct) WUE, and we can see that the
WUE changes drastically over the time. While there is no
public data for real-time EWIF in different cities/states, it
is evidently time-varying as well because, as in Fig. 2(a),
electricity fuel mix is time-varying and different electricity
generation methods consume different amounts of water
(excluding hydroelectric for which water consumption is
difficult to evaluate, nuclear electricity consumes the most
water, followed by coal-based thermal electricity and then
solar PV/wind electricity [19]).

The existing GLB techniques that focus on either carbon
efficiency (e.g., [16], [18], [25]) or electricity cost minimiza-
tion (e.g., [21], [22]) do not necessarily optimize the water
efficiency, because carbon/electricity-efficient data centers
may not be water-efficient. This can be seen from Fig. 2(b),
in which the (indirect) water efficiency is not in proportion to
carbon efficiency. The relation between electricity cost and
water efficiency is similar (see [3], [24]), but not shown here
for brevity. Therefore, a new GLB is needed for optimizing
data center water efficiency, which we will address in the
following sections.

III. MODEL

We consider a discrete-time model with equal-length time
slots indexed by 𝑡 = 1, 2, ⋅ ⋅ ⋅ , each of which has a duration
that matches the timescale for which the data center operator
can accurately predict the future information (including
the workload arrival rate, on-site renewable energy supply

Table I
LIST OF NOTATIONS.

Notation Description Notation Description
𝜆𝑗(𝑡) Job arrivals 𝑎𝑖(𝑡) Load distribution
𝑝𝑖(𝑡) Server power 𝑟𝑖(𝑡) On-site renewables
𝑤𝑖(𝑡) Water usage 𝑚𝑖(𝑡) # of active servers
𝑒𝑖(𝑡) Electricity cost 𝑑𝑖(𝑡) Average delay

and/or electricity price) and update its resource management
decision. In the following analysis, as in the existing lit-
erature (e.g. [18], [22]), we mainly focus on hour-ahead
prediction and hourly decisions for the convenience of p-
resentation. The time index 𝑡 is omitted wherever applicable
without causing ambiguity.

Next, we present the modeling details for the data centers
and workloads. Key notations are summarized in Table I.

Server. We consider 𝑁 geo-distributed data centers, in-
dexed by 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 . Each data center 𝑖 is partially
powered by on-site renewable energy plants (e.g., solar panel
and/or wind turbines) and contains 𝑀𝑖 servers that are
homogeneous within the data center, while heterogeneous
servers can be easily captured by extending our model.3

Processing speed of a server is quantified according to the
service rate (rather than the actual clock rates), i.e., the av-
erage number of jobs processed in a unit time. Specifically,
the service rate of a server in data center 𝑖 is 𝜇𝑖.

We denote by 𝑚𝑖(𝑡) ∈ [0,𝑀𝑖] the number of servers
turned on in data center 𝑖 at time 𝑡. While in theory
𝑚𝑖(𝑡) should be integers, approximating it as continuous
values does not affect the optimization result significantly
because there are usually tens of thousands of servers
in a data center [17], [18]. In our study, we focus on
server power consumption, while the power consumption
of other parts such as power supply system and cooling
system are captured by the (possibly time-varying) power
usage effectiveness (PUE) factor which, multiplied by the
server power consumption, gives the total data center power
consumption. Mathematically, we denote the total server
power consumption4 of data center 𝑖 during time 𝑡 by
𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡)), which can be expressed as

𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡)) = 𝑚𝑖(𝑡) ⋅
[
𝑒0,𝑖 + 𝑒𝑐,𝑖

𝑎𝑖(𝑡)

𝑚𝑖(𝑡)𝜇𝑖

]
, (2)

where 𝑎𝑖(𝑡) =
∑𝐽

𝑗=1 𝜆𝑖,𝑗(𝑡) is the total amount of workloads
dispatched to data center 𝑖 (with 𝜆𝑖,𝑗(𝑡) being the amount
of workloads originating from the 𝑗-th gateway, as will be
specified in the next subsection), 𝑒0,𝑖 is the static server
power regardless of the workloads (as long as a server is
turned on) and 𝑒𝑐,𝑖 is the computing power incurred only
when a server is processing workloads in data center 𝑖.

3If heterogeneous servers are considered, we need to decide how many
servers of each type are turned on to process workloads.

4This is equivalent to energy consumption, since the length of each time
slot is the same.
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Electricity cost. We denote the electricity price in data
center 𝑖 at time 𝑡 by 𝑢𝑖(𝑡), which is known to the data
center operator no later than the beginning of time 𝑡 and may
change over time if the data centers participate in real-time
electricity markets (e.g., hourly market [18]). Given 𝑟𝑖(𝑡) ∈
[0, 𝑟𝑖,max] amount of available on-site renewable energy in
data center 𝑖, we can express the incurred electricity cost of
data center 𝑖 as

𝑒𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡)) = 𝑢𝑖(𝑡) [𝛾𝑖(𝑡) ⋅ 𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡))− 𝑟𝑖(𝑡)]
+
,

(3)

where 𝛾𝑖(𝑡) is the PUE of data center 𝑖 and [ ⋅ ]+ =
max{⋅, 0} indicates that no electricity will be drawn from the
power grid if on-site renewable energy is already sufficient.
While we use Eqn. (3) to represent the electricity cost for
data center 𝑖 at time 𝑡 (as considered by [18], [22]), our
analysis is not restricted to a linear electricity cost function
and can also model other electricity cost functions such as
nonlinear convex functions (e.g., data centers are charged at
a higher price if it consumes more power).

Water consumption. Water is consumed both directly
(i.e., by cooling system) and indirectly (i.e., by electricity
generation) in data centers. The direct water consumption
can be easily obtained by multiplying the server power
consumption with direct WUE, while the indirect water
consumption depends on the electricity usage and the local
EWIF. Specifically, we can express the water consumption
of data center 𝑖 at time 𝑡 as

𝑤𝑖(𝑡) =𝜖𝑖,𝑑(𝑡) ⋅ 𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡))

+ 𝜖𝑖,𝑖𝑑(𝑡) ⋅ [𝛾𝑖(𝑡) ⋅ 𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡))− 𝑟𝑖(𝑡)]
+
,

(4)

where 𝜖𝑖,𝑑(𝑡) is the direct WUE at time 𝑡 and 𝜖𝑖,𝑖𝑑(𝑡) is the
EWIF of the electricity powering data center 𝑖. Note that,
while the value of 𝜖𝑖,𝑖𝑑(𝑡) is determined based on the energy
fuel mix and can be obtained by inquiring the local utility
company, acquiring the value of 𝜖𝑖,𝑑(𝑡) is not straightforward
because it seems to depend on various factors such as
cooling technology, humidity and temperature and there is
no publicly available study on this (to our best knowledge
and also as corroborated by Green Grid’s claim that the study
of WUE is still at the very beginning [24]). In this paper, we
assume that 𝜖𝑖,𝑑(𝑡) is known at the beginning of time slot
𝑡, while noting that it could be a potential separate research
topic to find the key factors affecting 𝜖𝑖,𝑑(𝑡).

Workload. As in [18], [22], we consider a scenario in
which there are 𝐽 gateways, each of which represents a
geographically-concentrated source of workloads (e.g., a
state or province) and then forwards the incoming workloads
to the 𝑁 geo-distributed data centers. The term “workload”
is generic, representing a synthesis of computing tasks/jobs
(e.g., search requests, video streaming). We denote the work-
load arrival rate at the 𝑗-th gateway by 𝜆𝑗(𝑡) = [0, 𝜆𝑗,max],
and the workload is dispatched to data center 𝑖 at a rate
of 𝜆𝑖,𝑗(𝑡) that we shall optimize. We assume that 𝜆𝑗(𝑡) is

available (e.g., by using regression-based prediction) at the
beginning of each time slot 𝑡, as widely considered in prior
work [10], [15], [18].

We quantify the overall end-to-end delay performance
for processing workloads from gateway 𝑗 in data center 𝑗
using the average delay 𝑑𝑖,𝑗(𝑎𝑖(𝑡),𝑚𝑖(𝑡)), which is intu-
itively increasing in 𝑎𝑖(𝑡) =

∑𝐽
𝑗=1 𝜆𝑖,𝑗(𝑡) and decreasing in

𝑚𝑖(𝑡) where 𝑚𝑖(𝑡) is the number of (homogeneous) servers
turned on in data center 𝑖 [17], [18], [22]. As a concrete
example, we can model the service process at each server
as an M/G/1/PS queue [18]. Then, by incorporating the
network transmission delay, the end-to-end average delay
of workloads scheduled from gateway 𝑗 to data center 𝑖 is

𝑑𝑖,𝑗(𝑎𝑖(𝑡),𝑚𝑖(𝑡)) =
1

𝜇𝑖 − 𝑎𝑖(𝑡)/𝑚𝑖(𝑡)
+ 𝑙𝑖,𝑗(𝑡), (5)

where 𝑎𝑖(𝑡) =
∑𝐽

𝑗=1 𝜆𝑖,𝑗(𝑡) represents the total workloads
processed in data center 𝑖, and 𝑙𝑖,𝑗(𝑡) is average network
delay approximated in proportion to the distance between
data center 𝑖 and the 𝑗-th gateway, which can be well
estimated by various approaches such as mapping and syn-
thetic coordinate approaches. It should be further made clear
that our delay model is mainly intended to characterize the
general trend of the overall end-to-end performance and to
facilitate the server provisioning decision, while the delay
performance for specific tenants/applications are handled
using separate techniques beyond the scope of our study.

IV. GEOGRAPHIC LOAD BALANCING

In this section, we first present optimization objective,
constraints, as well as the problem formulation for minimiz-
ing WUE via geographic load balancing. Then, we develop
an efficient algorithm to solve the problem.

A. Problem Formulation

In this subsection, we first specify the optimization ob-
jective as well as constraints, and then present the problem
formulation.

Objective. Based on the metric recently developed for
measuring data center water efficiency [6], [24], we focus
on maximizing the overall (hourly) WUE of all the data
centers, specified as follows

𝑔(𝜆(𝑡),m(𝑡)) =

∑𝑁
𝑖=1 𝑤𝑖(𝑡)∑𝑁

𝑖=1 𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡))
, (6)

where 𝑤𝑖(𝑡) is the water usage (both directly and indirectly)
and 𝑝𝑖(𝜆𝑖(𝑡),𝑚𝑖(𝑡)) is the server power consumption in
data center 𝑖, given by (4) and (2), respectively. As our
study makes the first research effort to rigorously optimize
data center water efficiency from the resource management
perspective (fundamentally differing from the costly engi-
neering approach of renovating the cooling system [6]), we
make the following three remarks to clarify our objective.
First, while WUE was originally proposed as a metric
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for quantifying data center water efficiency over a year
[24], we take the position that optimizing hourly WUE
provides more timely information and may facilitate data
center managers to improve their operations more promptly.
This position has also been strengthened by Facebook’s
recent move to publicly report their hourly (direct) WUE
[6]. Second, although we choose to optimize the combined
WUE of all the data centers (because all the water usage
will be attributed to the common data center owner, such
as Google and Microsoft), alternative objectives such as
(weighted) sum WUE of individual data centers and total
water consumption can also be optimized as variants of our
study. Third, while our current study focuses on optimizing
water efficiency (which is undoubtedly an emerging critical
issue for sustainable computing [6], [24]) without explicitly
taking into account electricity energy minimization, we
do not intend to downplay the seriousness of the soaring
electricity consumption in data centers. In fact, one of our
constraints is imposed on the total electricity cost, which
implicitly bounds the maximum electricity consumption. We
will jointly optimize the energy and water efficiency in our
future work.

Constraints. The server provisioning and load distribu-
tion decisions need to satisfy

𝑑𝑖,𝑗(𝑎𝑖,𝑚𝑖) ≤ 𝐷, ∀𝑖, 𝑗, 𝑡, (7)

𝑚𝑖(𝑡) ≤𝑀𝑖, ∀𝑖, 𝑡, (8)
𝑁∑
𝑖=1

𝜆𝑖,𝑗(𝑡) = 𝜆𝑗(𝑡), ∀𝑗, 𝑡, (9)

𝑚𝑖(𝑡)𝜇𝑖 > 𝑎𝑖(𝑡) =
𝐽∑

𝑗=1

𝜆𝑖,𝑗(𝑡), (10)

where (7) specifies the maximum average delay constraint
to avoid intolerable data center performance, (8) imposes a
capacity constraint, (9) and (10) prohibit workload dropping
and server overloading, respectively. In addition, as con-
sidered in [25], the data center needs to satisfy its budget
constraint (i.e., electricity cost in our study). In particular,
the following constraint needs to be satisfied

𝑁∑
𝑖=1

𝑒𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡)) ≤ 𝐵(𝑡), ∀𝑖, 𝑡, (11)

where 𝑒𝑖(𝑎𝑖,𝑚𝑖) is the electricity cost of data center 𝑖 given
by (3). Note that the budget 𝐵(𝑡) is treated as exogenously
given in our study, while we note that it may be optimized
as a separate study based on long-term workload estimations
(see [25] for details). Finally, note that water consumption
is more of a sustainability issue and its bill is not considered
as operational cost, because: (a) indirect water consumption
is already paid in electricity bills; and (b) direct water
consumption is relatively cheaper compared to electricity
and the bill may be further reduced by using recycled or
“grey” water [2].

Problem formulation. We now present the problem for-
mulation as follows.

P1 : max
𝒜(𝑡)

𝑔(𝜆(𝑡),m(𝑡)) (12)

𝑠.𝑡., constraints (7)–(11), (13)

where 𝒜 represents the server provisioning and load dis-
tribution decisions, i.e., m(𝑡) and 𝜆(𝑡), which we need
to optimize. Solving the problem P1 only requires the
current electricity price, incoming workloads, available on-
site renewable energies and local WUEs, which are readily
available in practice by leveraging hour-ahead prediction
techniques [17], [18], [22].

B. GLB-WS

In this subsection, we present an efficient solution to the
problem P1, called GLB-WS, by reformulating P1 as linear-
fractional programming [8].

We note first that the non-linear delay constraint in
(7) and the operator [ ⋅ ]+ = max{⋅, 0} prohibit direct
application of linear-fractional optimization. To circumvent
this difficulty, we linearize the constraint (7) and the operator
[ ⋅ ]+ = max{⋅, 0} by rewriting (7) as

∑𝐽
𝑗=1 𝜆𝑖,𝑗(𝑡) ≤ (𝜇𝑖−

1
𝐷 )𝑚𝑖(𝑡), ∀𝑖, 𝑡 and by introducing an auxiliary decision
variable 𝑧𝑖(𝑡) indicating the amount of electricity usage of
data center 𝑖 such that 𝑧𝑖(𝑡) ≥ 𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡)) − 𝑟𝑖(𝑡) and
𝑧𝑖(𝑡) ≥ 0. Next, we reformulate P1 as a linear-fractional
programming problem as follows.

P2 : min
𝒜∪

𝑧

∑𝑁
𝑖=1 [𝜖𝑖,𝑑 ⋅ 𝑝𝑖(𝑎𝑖,𝑚𝑖) + 𝜖𝑖,𝑖𝑑 ⋅ 𝑧𝑖]∑𝑁

𝑖=1 𝑝𝑖(𝑎𝑖,𝑚𝑖)
(14)

𝑠.𝑡., constraints (8)–(11), (15)
𝐽∑

𝑗=1

𝜆𝑖,𝑗 ≤ (𝜇𝑖 − 1

𝐷 + 𝑙𝑖,𝑗
)𝑚𝑖, ∀𝑖, 𝑗 (16)

𝑧𝑖 ≥ 0 and 𝑧𝑖 ≥ 𝑝𝑖(𝑎𝑖,𝑚𝑖)− 𝑟𝑖, ∀𝑖, (17)

where, for brevity, we omit the time index 𝑡 without causing
ambiguity.

It can be seen from (2) that the server power

𝑝𝑖(𝑎𝑖(𝑡),𝑚𝑖(𝑡)) = 𝑚𝑖(𝑡)𝑒0,𝑖 + 𝑒𝑐,𝑖

∑𝐽
𝑗=1 𝜆𝑖,𝑗(𝑡)

𝜇𝑖
is affine

in m(𝑡) and 𝜆(𝑡). Thus, P2 belongs to linear-fractional
programming (and also quasiconvex programming) [8]. In
what follows, we present an efficient iterative algorithm
based on bisection method to solve P2. To begin with, we
introduce another auxiliary variable 𝑣 ≥ 0, and define the
following inequality

𝑁∑
𝑖=1

[𝜖𝑖,𝑑 ⋅ 𝑝𝑖(𝑎𝑖,𝑚𝑖) + 𝜖𝑖,𝑖𝑑 ⋅ 𝑧𝑖] ≤ 𝑣 ⋅
𝑁∑
𝑖=1

𝑝𝑖(𝑎𝑖,𝑚𝑖). (18)

Then, the bisection-based iterative method can be formally
described in Algorithm 1, where 𝑀𝑎𝑥𝑁𝑢𝑚 is the maximum
possible WUE and 𝜖 > 0 is a small positive number govern-
ing the stopping criterion. During each iteration, a feasibility
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Algorithm 1 GLB-WS
1: Input 𝜆𝑗 , 𝑟𝑖, 𝜖𝑖,𝑑, 𝜖𝑖,𝑖𝑑, and 𝑢𝑖, for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁
2: Initialize: 𝑙𝑏 = 0, 𝑢𝑏 = 𝑀𝑎𝑥𝑁𝑢𝑚, 𝑣 = 𝑙𝑏+𝑢𝑏

2
3: while 𝑢𝑏− 𝑙𝑏 > 𝜖 do
4: Check if there exist m, 𝜆, and 𝑧 that satisfy (18)

and constraints (15)–(17); if “yes”, then 𝑢𝑏 = 𝑣; else
𝑙𝑏 = 𝑣

5: 𝑣 = 𝑙𝑏+𝑢𝑏
2

6: end while

checking problem is solved, which is linear programming
and hence easy to solve [8]. The final output of Algorithm 1
is a feasible decision satisfying (18) and constraints (15)–
(17). Algorithm 1 requires exactly ⌈log2(𝑢𝑏−𝑙𝑏

𝜖 ⌉ iterations,
and the final WUE will be within 𝜖 > 0 of the optimum.
Thus, the total complexity of solving Algorithm 1 is quite
affordable for data centers (even for very small 𝜖 > 0),
making it an appealing candidate for future geographic load
balancing decisions.

V. PERFORMANCE EVALUATION

This section presents a trace-based simulation study to
validate our analysis. We first present our data set and then
compare GLB-WS with prior research

A. Data set

We consider four geographically distributed data centers
located in: (#1) Prineville, OR, (#2) Northlake, IL, (#3)
Forest City, NC, and (#4) Somerset, NJ. The four data
centers have peak powers of 25MW, 18MW, 30MW and
20MW, respectively. For the convenience of illustration, the
PUEs are chosen as 1.30 for all the data centers. In these four
data centers, each server has a maximum power of 200W,
160W, 220W, and 250W, respectively, and static/idle server
power takes up 60% of the maximum power. The normalized
service rates of each server in the four data centers are
chosen to be 1.00, 0.90, 1.25 and 1.10, respectively. All
the workloads are distributed to the four data centers by the
front-end gateway in St. Luis, MO, which has comparable
distances to all the data centers. By default, the average
response time constraint is 500ms (as in the case of web
services [22]). The data center capacity provisioning and
load distribution decisions are updated hourly.
∙ Workloads: We obtain a 24-hour workload trace by pro-

filing the server usage log of Florida International University
(FIU, a large public university in the U.S. with over 50,000
students) on May 1, 2012, and scale the FIU workload
proportionally. Fig. 3(a) shows the trace normalized with
respect to the total computing capacity of the four data
centers. Other synthetic workloads are also tested and the
results are similar.
∙ On-site renewable energy: We obtain from [3] four sets

of the hourly renewable energies (generated through solar
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(d) Electricity cost comparison be-
tween GLB-WS and GLB-Cost

Figure 3. FIU workload trace and performance comparison between GLB-
WS and GLB-Cost.

panels and wind turbines) on May 1 of 2012 from four
locations that are closest to the data centers, and scale them
proportionally such that on-site renewable energy supply
takes up approximately 4% of the maximum energy demand
in each data center on average.
∙ Electricity price: We obtain from [3] hourly electricity

prices from four trading nodes closest to our considered data
centers on May 1, 2012.
∙ Indirect EWIF and direct WUE for cooling system: Due

to the lack of access to exact EWIF data in the four data
center locations, we use the (time-varying) state-level EWIF
values [24]. Since only Facebook has just started to report
(hourly) direct WUE for its data center in Prineville, OR,
we use the data presented in [6] for calculating the on-
site water usage in data center #1. For the other three data
centers, we use 1.62L/kWh (the same as eBay’s direct WUE
in May 29, 2013), 0.30L/kWh, and 1.00L/kWh, respectively,
while randomly adding up to 20% noises to incorporate the
temporal diversity.

B. Results

In this subsection, we compare GLB-WS with the state-
of-the-art research using the above trace data.

GLB has been extensively studied for data center opti-
mization from various perspectives: e.g., minimizing elec-
tricity cost [21], [22], maximizing renewable energy utiliza-
tion [16], [18], [25], minimizing both electricity and delay
cost [17], and capping long-term energy consumption [15].
While it is not possible to compare GLB-WS against all
the existing GLB techniques, we choose GLB for electricity
cost minimization [21], [22], called GLB-Cost, as our
benchmark, as it is one of the most widely-considered GLB
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Figure 4. Water efficiency and distributed workloads in each data center.

techniques. Comparison against other GLB techniques (e.g.,
those in [16], [18]) is similar and hence omitted for brevity.

Improved water efficiency. We first see from Fig. 3(b)
that GLB-WS significantly improves the data center water
efficiency compared to GLB-Cost: GLB-WS reduces the av-
erage WUE by nearly 60% than GLB-Cost. This is because
GLB-WS can dynamically schedule workloads to water-
efficient data centers, while GLB-Cost is water-oblivious
and may “inappropriately” process more workloads in water-
consuming (but cost-effective) data centers.

Reduced water consumption. While the explicit objec-
tive of GLB-WS is minimizing the WUE by scheduling
workloads to water-efficient data centers, a direct byproduct
of GLB-WS is the reduced water consumption. We see from
Fig. 3(c) that, compared to GLB-Cost, GLB-WS reduces the
water consumption remarkably (by over 51% on average),
making data centers much more water efficient.

Comparable electricity cost and energy consumption.
The focus of GLB-WS is not minimizing the electricity
cost, but rather satisfying the given budget constraint. Thus,
as can be seen from Fig. 3(d), GLB-WS incurs a higher
electricity bill (by approximately 5 − 20%) compared to
GLB-Cost that explicitly minimizes the electricity cost.
While electricity cost is certainly important for data centers,
we argue that sustainability, in particular water sustainability,
is also critical and needs to be taken into consideration in the
future design of data centers. Nonetheless, as water-efficient
data centers is typically different from cost-effective ones
(as can be seen from Fig. 4(b)), it may not be possible
to optimize both metrics simultaneously, and an inherent
tradeoff exists between (water) sustainability and data center
operational cost, pointing to a potential research direction as
our future work. Although not shown in the paper for brevity,
we note that the average electricity energy consumptions by
GLB-WS and GLB-Cost are almost the same (i.e., within
1% in our case study).

Water-driven scheduling. Just as GLB-Cost is cost-driven
and schedules workloads to cost-effective data centers [21],
[22], GLB-WS is water-driven and can effectively sched-
ule workloads to water-efficient data centers. We show in
Fig. 4(a) the average normalized WUE (i.e., water usage per

unit computing capacity): data centers #3 and #4 are water
efficient (but cost inefficient), while data centers #1 and #2
are on the opposite side. Thus, it can be seen from Fig. 4(b)
that GLB-WS can schedule more workloads to data centers
#3 and #4, whereas GLB-Cost favors data centers #1 and
#2 for processing workloads.5 This intuition is further high-
lighted when we remove the electricity budget constraint for
GLB-WS: as shown in Fig. 4(b), without considering budget
constraint, GLB-WS will schedule almost all workloads to
water-efficient data centers (i.e., #3 and #4).6

To sum up, GLB-WS focuses on a unique aspect of
data center operation, i.e., water efficiency. It can effectively
schedule workloads to water-efficient data centers to reduce
the total water consumption, thereby improving the water
efficiency. Nonetheless, except for water efficiency, we do
not imply that GLB-WS outperforms all the existing GLB
techniques in every other aspect (e.g., GLB-Cost minimizes
the electricity cost, whereas the GLB in [16], [18] focuses
on carbon footprint). Instead, we emphasize that GLB-WS
is complementary to the existing research and that water
sustainability deserves more attention from the research
community.

VI. RELATED WORK

We provide a snapshot of the related work from the
following aspects.

Data center optimization. There has been a growing
interest in optimizing data center operation from various
perspectives such as cutting electricity bills [9], [14], [21],
[22], minimizing brown energy consumption [13], [15], [18],
and minimizing response times [12]. For example, “pow-
er proportionality” via dynamically turning on/off servers
based on the workloads has been extensively studied and
advocated as a promising approach to reducing the energy
cost of data centers [14], [17], [22]. By exploring spatial
diversities of electricity prices and/or energy “greenness”,
[21] study geographical load balancing among multiple data
centers to minimize energy cost, [15] caps the long-term
energy consumption based on predicted workloads, and [13],
[18] propose to reduce brown energy usage by scheduling
workloads to data centers with more green energies.

Water efficiency in data centers. To our best knowledge,
there have been no research activities that explicitly optimize
water efficiency in data centers. The only research works that
are broadly relevant to data center water consumption are
[7], [11], [23], which either point out the criticality of water
conservation [11] or develop a dashboard for visualizing the
water efficiency [7], [23], but no effective solutions have
been proposed towards water sustainability in data centers.
Publicly known efforts for water efficiency in data centers

5GLB-Cost schedules more workloads to data center #3 than to #2,
because data center #3 has a much higher capacity.

6With a less stringent electricity budget constraint, the overall WUE will
clearly be reduced using GLB-WS.
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are mainly restricted to engineering approaches and include
installing innovative cooling systems (e.g., outside air econo-
mizer), using recycled water, and powering data centers with
on-site renewable energies to reduce the consumption of
electricity (and hence, indirect water consumption, too) [2],
[6]. These engineering methods are costly and orthogonal
to our proposal: we are using a “software” approach that
improves water efficiency from the perspective of workload
management without substantial capital investments.

To sum up, our work takes the first step to rigorously
address water sustainability in data centers. While our pro-
posed GLB-WS may not possibly outperform all the existing
GLB techniques in every aspect (e.g., GLB-WS incurs
a higher electricity cost than GLB-Cost that particularly
minimizes the cost), GLB-WS explicitly focuses on water
efficiency that is becoming a critical concern in future data
centers in light of the global water shortage trend. Moreover,
our research on data center water efficiency provides an
important, unique and complementary perspective to the
existing data center research, and we take the liberty of en-
visioning that incorporating water efficiency is increasingly
essential in future research efforts.

VII. CONCLUSION

In this paper, we made the first step towards water
sustainability in data centers. We showed that data center
WUE also exhibits spatial and temporal diversities. Lever-
aging these characteristics, we proposed GLB-WS, a GLB
technique that can dynamically dispatch workloads to water-
efficient data centers while satisfying the electricity cost and
delay constraint. We also performed a trace-based simulation
study to complement the analysis. The result was consistent
with our analysis: compared to the state-of-the-art cost-
minimizing GLB approach, GLB-WS significantly improves
water efficiency and reduces water consumption. A natural
future research direction is combining water efficiency with
other metrics (e.g., carbon efficiency, electricity cost) in data
center optimization.
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