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Abstract—As the critical infrastructure for supporting Internet and cloud computing services, massive geo-distributed data centers

are notorious for their huge electricity appetites and carbon footprints. Nonetheless, a lesser-known fact is that data centers are also

“thirsty”: to operate data centers, millions of gallons of water are required for cooling and electricity production. The existing

water-saving techniques primarily focus on improved “engineering” (e.g., upgrading to air economizer cooling, diverting recycled/sea

water instead of potable water) and do not apply to all data centers due to high upfront capital costs and/or location restrictions. In this

paper, we propose a software-based approach towards water conservation by exploiting the inherent spatio-temporal diversity of water

efficiency across geo-distributed data centers. Specifically, we propose a batch job scheduling algorithm, called WACE (minimization

of WAter, Carbon and Electricity cost), which dynamically adjusts geographic load balancing and resource provisioning to minimize

the water consumption along with carbon emission and electricity cost while satisfying average delay performance requirement. WACE

can be implemented online without foreseeing the far future information and yields a total cost (incorporating electricity cost, water

consumption and carbon emission) that is provably close to the optimal algorithm with lookahead information. Finally, we validate

WACE through a trace-based simulation study and show that WACE outperforms state-of-the-art benchmarks: 25 percent water

saving while incurring an acceptable delay increase. We also extend WACE to joint scheduling of batch workloads and delay-sensitive

interactive workloads for further water footprint reduction in geo-distributed data centers.

Index Terms—Capacity provisioning, data center, geographic load distribution, resource management, water footprint

Ç

1 INTRODUCTION

DATA centers, housing tens of thousands of servers to
satiate the ever increasing demand for Internet and

cloud computing services, are notorious for high energy
consumption. This raises serious concerns for data centers’
operational costs and sustainability impacts due to carbon
footprints embedded in electricity usage. While many
recent studies have focused on decreasing energy consump-
tion (e.g., [1], [2]) as well as carbon footprint of data centers
(e.g., [3], [4]) for sustainability, an equally, if not more,
important yet often neglected aspect of data center sustain-
ability is the massive water footprint.

1.1 Why Data Center Water Footprint Matters?

Massive water footprint. Data centers consume a significant
amount of water both directly and indirectly. Direct onsite
water consumption is attributed to cooling systems. While
there exist various types of cooling systems such as air-side
economizer [5], large data centers, including AT&T [6] and

eBay [7], often resort to cooling towers, where server heat is
rejected into the environment via water evaporation. It is
reported that the US National Security Agency’s data center
in Utah would require up to 1.7 million gallons of water per
day, enough to satisfy over 10,000 household’s water
needs. Cooling facilities of eBay consume 2.52 liters of
water per kilowatt-hour (L/kWh) server energy, as of
2013 summer [7]. Even outside air cooling, which is par-
ticularly suitable for cold climate, consumes water for
temperature/humidity control (e.g., Facebook’s data cen-
ter uses 0.42 L/kWh as of February 2014 [8]). In addition
to direct onsite water consumption, data centers are also
held responsible for an enormous amount of indirect
water embedded in electricity generation: electricity pro-
duction accounts for the largest water withdrawal in the
US and an average of 1.8 L of water is evaporated for just
1 KWh of electricity generation (even excluding the much
more water-consuming hydropower) [9], [10].

Extended droughts. Extended droughts and water short-
age are quickly spreading as a global crisis, amid the antici-
pation that global water demand may exceed the supply by
40 percent in 2030 [11], [12]. Even in the US, over 70 percent
of the land area was affected by drought during 2012 [13].
The situation has become even worse in 2014 for some
of the US states: following a three-year abnormal dryness,
California declared drought emergency on January 17, 2014,
urging its residents to cut water usage by at least 20 percent
[14]. Even in water-abundant regions, water conservation
can benefit data centers in acquiring green certifications
(such as LEED program, which 77 percent large data centers
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are seeking, as shown in a recent survey [15]), tax credits
[16], government-mandated water compliance code [17],
[18], fulfilling corporate social responsibility and mitigating
business continuity [6].

1.2 How to Conserve Water in Data Centers?

Despite the emergence of water footprint as a critical con-
cern, little prior research has been done to address this
issue. Some large IT companies such as Google and Face-
book have recently become concerned about the tremen-
dous amount of water usage by their data centers, and are
developing new techniques to mitigate the water consump-
tion (e.g., applying air economizer instead of cooling towers
in cold regions, using recycled/sea water instead of potable
water [8], [19]). However, these engineering approaches
often require high upfront costs and/or suitable locations/
climates, which significantly limit their applicability to all
data centers and hence necessitate a more “universal”
approach that will be addressed in this paper.

Although water conservation and energy saving are
related, most of the current research on data center energy
optimization (e.g., [4], [20], [21]) is insufficient for water con-
servation. This is because existing studies do not consider
spatio-temporal diversity of data center water efficiency: 1)
temporal diversity results from volatile weather condition
and time-varying energy fuel mixes of electricity generation;
and 2) spatial variation is because different data center loca-
tions (i.e., states) constitute varying amount of energy fuel
mix (details are provided in Section 3). Moreover, water effi-
ciency is not equivalent to electricity cost/carbon efficiency
(e.g., nuclear power consumes more than 2 L of water per
kWh, while incurring little carbon emission).

Some recent studies [22], [23] exploit spatial diversity of
water efficiency by scheduling delay-sensitive interactive
workloads among data centers to reduce water footprint.
However, they neglect the temporal diversity of water
efficiency, which allows untapped water saving opportuni-
ties through dynamically scheduling delay-tolerant jobs
over time.

Our work. We address the dearth as well as urgency of
data center water conservation by integrating spatio-tempo-
ral diversity of water efficiency into workload scheduling
and resource provisioning decisions for geo-distributed
data centers. Our approach judiciously decides “when” and
“where” to process workloads as well as how much comput-
ing resource needs to be provisioned, based on three
widely-available control knobs: workload scheduling (both
across and within data centers), turning on/off servers, and
adjusting server processing speeds (via dynamic voltage
and frequency scaling, or DVFS). While these three have
been extensively studied in various contexts ([1], [4], [24]),
the uniqueness of our research is that we integrate spatio-tem-
poral diversity of water efficiency and propose a new sched-
uling algorithm to tune the knobs for water conservation.

It is a challenging problem to reduce water footprint
via resource management. Intuitively, we would like to pro-
cess more jobs in data centers with higher water efficiency
and/or when water efficiency is higher. Nonetheless, naive
techniques will result in two undesirable consequences:
(1) electricity cost may be significantly compromised, and
(2) jobs will experience an intolerable delay if they are only
processed in very water-efficient times, whereas water may

be unnecessarily wasted if temporal diversity of water effi-
ciency is neglected. Moreover, the time-varying nature of
water efficiency (resulting from volatile outside temperature
and energy fuel mixes), job arrival, carbon emission rate and
electricity price adds further challenges to making resource
management decisions over a long timescale, since it is diffi-
cult to accurately foresee “when”water efficiency is high.

To address the above challenges, we focus on delay-toler-
ant batch jobs and propose a provably-efficient online batch
job scheduling algorithm, called WACE (minimization of
WAter, Carbon and Electricity cost), to minimize water
usage while also considering electricity cost, carbon emis-
sion and delay performance in geo-distributed data centers.
WACE exploits the spatio-temporal variation in water effi-
ciency, electricity price as well as carbon emission rate, and
dynamically dispatches workloads to data centers while sat-
isfying delay performance requirement. We conduct a trace-
based simulation to validate WACE. The results show that:
(1) WACE can reduce the total cost while satisfying the
average delay constraint; and (2) compared with state-of-
the-art scheduling algorithms, WACE can reduce the total
cost by approximately 20 percent, while reducing the water
consumption by approximately 25 percent. Finally, we
extend WACE to jointly schedule delay-tolerant batch jobs
and delay-sensitive interactive jobs for further water foot-
print reduction in geo-distributed data centers.

To sum up, we take the position that addressing the enor-
mous water footprint is essential for data center operation,
especially in water-stressed regions. We make the following
contributions. First, as compared to the existing research that
jointly considers workload latency, electricity cost and car-
bon footprint [4], we reduce data centers’ water footprint by
incorporating water conservation as a complementary yet
critical criterion into resource management, which further
extends the current scope of research on data center sustain-
ability. Second, we propose a provably-efficient batch job
scheduling algorithm, WACE, which can be implemented
online without foreseeing the far future information. Third,
we evaluate WACE and demonstrate its effectiveness using
simulations based on real-world traces. Last but not least, we
consider jointly scheduling delay-tolerant batch jobs and
delay-sensitive interactive jobs for water conservation.

2 MODEL

In this section, we lay down the system model for our
resource management-based approach towards water con-
servation. We consider a discrete-time framework to model
time-varying factors. The entire time horizon of interest is
divided into K time slots of equal length (e.g., in the order
of minutes or one hour), which we denote by t ¼ 0; 1; . . . ;
K � 1. Resource management decisions are made at the
beginning of each decision time slot. Key notations are sum-
marized in Table 1. Next, we present the modelling details
for data centers and workloads that capture three widely-
available control knobs: workload scheduling (both across
and within data centers), turning on/off servers, and adjust-
ing server processing speeds (via DVFS).

2.1 Workload

In general, there are two types of workloads in data centers:
batch workloads and interactive workloads. Many batch
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jobs are delay-tolerant and usually do not require to be
processed immediately after arrival, as long as they do not
get stalled unreasonably long. Examples of such jobs are
Google’s search indexing, periodical data backups, scientific
computing, etc. Therefore, compared to interactive jobs (e.g.,
web services or business transactional applications) that typ-
ically have a delay requirement in the order of tens of milli-
seconds, a larger delay is acceptable for batch job processing,
allowing the data center operator to leverage the temporal
variation of water-carbon efficiency and electricity price.
We will first focus on scheduling batch jobs, while extension
of jointly scheduling batch and interactive jobs is available in
Section 5. We denote by aðtÞ the total amount of batch job
arrivals at time t, while the amount of batch jobs dispatched

to data center i is aiðtÞ subject to aðtÞ ¼ PN
i¼1 aiðtÞ. We mea-

sure the batch workloads in terms of machine-time, as
considered widely in existing literature [25], [26] and can
successfully guide dynamic provisioning of computing
resources. Note that our model can also be extended
to include the additional constraint that certain types of
jobs can only be dispatched to a subset of data centers for
processing due to, for example, data availability constraints.1

2.2 Data Center

We consider N geo-distributed data centers denoted by
i 2 f1; 2; . . . ; Ng. Each data center has an auxiliary onsite
renewable energy source (e.g., solar panels [27]), and we
denote the amount of available renewable energy at time t
by riðtÞ for data center i. There are a total of MiðtÞ servers
that are homogeneous and available for processing batch
jobs within data center i at time t. Note that our model is
easily extensible to heterogeneous servers and, if so, both
number and type of servers allocated to process jobs need
to be decided. Servers may run at different processing
speeds and incur different power via DVFS [28]. Specifi-
cally, we consider an array of finite processing speeds
denoted by Si ¼ fsi;1; . . . ; si;Ki

g, from which a speed si is

chosen for processing batch workloads for data center i. In
general, server power consumption is related to a variety of
resources, including CPU, memory and disk. However,
since CPU is regarded as the main contributor to power con-
sumption of a server (besides idle power), we focus on CPU

utilization, while suppressing other components when cal-
culating server power consumption [1], [29]. Hence, we
express the total power consumption of a server in data cen-

ter i at time t as ai � snii ðtÞ þ p0;i [30], [31], where ai is a posi-
tive scaling factor and relates the processing speed to the
power consumption; p0;i represents the power consumption
in idle or static state; and the exponent parameter ni is
determined through empirical methods (example values of
which range from 1 to 3, and can be found in [28], [30], [32]).

Based on the above power model, we now derive data
center power consumption at time t, which is also equiva-
lent to energy consumption in our model because all time
slots have the same duration and hence power and energy
is used interchangeably. For convenience of presentation,
we simply model the server energy consumption by interac-
tive workloads in data center i as an exogenously-deter-
mined value pi;intðtÞ. However, we will include interactive
workloads in Section 5 and show further improvement of
such inclusion. Letting siðtÞ and miðtÞ be processing speed
and the number of active servers for processing batch work-
loads, respectively, we can write the total server energy con-
sumption at data center i as

piðtÞ ¼ pi;batðtÞ þ pi;intðtÞ
¼ miðtÞ � ½ai � snii ðtÞ þ p0� þ pi;intðtÞ:

(1)

Note that we do not consider server utilization to determine
pi;batðtÞ as batch jobs can be equivalently considered as
running at a constantly high utilization. The reason is batch
jobs are processed at servers’ maximum processing capacities
given a certain speed, and results in a continuously high
server utilization.

Next, given the available on-site renewable energy riðtÞ,
data center i’s electricity usage at time t is giðtÞpiðtÞ �½
riðtÞ�þ, where ½ � �þ ¼ maxf�; 0g and giðtÞ is the factor of
Power Usage Effectiveness (PUE) at data center i capturing
the non-IT energy consumption such as cooling and power
supply system. Note that, as our focus is on workload
scheduling, we do not consider facility management such as
battery charging/discharging, which nonetheless can be
integrated using other orthogonal techniques [33].

3 ONLINE BATCH JOB SCHEDULING: WACE

In this section, we present our online batch job scheduling
algorithm WACE. We will first formulate three types of
“costs” (e.g., water consumption, electricity cost, and carbon
emission), present the problem formulation, and then
develop WACE to minimize the total weighted cost in the
absence of long-term future information (e.g., future water
efficiency and energy fuel mixes, workload arrivals, etc.).

3.1 Cost

Our work aims to address three “costs”: water consumption,
electricity cost and carbon emission. While electricity cost can
be directly represented and quantified in terms of monetary
values, water consumption and carbon emission symbolize
data center sustainability and can be converted to monetary
costs whenwe present the problem formulation [4].

� Water consumption. Data centers consume a significant
amount ofwater both “directly” (for cooling) and “indirectly”

TABLE 1
List of Key Notations

Notation Description

aðtÞ Batch workload arrival
miðtÞ # of active servers at data center i
siðtÞ Server processing speed at data center i
piðtÞ Server energy consumption at data center i
wiðtÞ Water consumption at data center i
ciðtÞ Carbon emission at data center i
eiðtÞ Electricity cost at data center i
gðtÞ Total cost
V Cost-delay parameter
JiðtÞ Job queue for each data center i

1. As specified by the queueing dynamics (in Section 3.3), batch job
arrivals at time t will not be available for processing until time tþ 1,
thereby implicitly capturing the possible delay incurred during the
load dispatching stage (e.g., due to data movement).
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(for electricity generation) [10], [37]. In what follows, we pro-
vide a brief sketch of these two types of water consumption,
introduce the notion of Water Usage Effectiveness (or WUE,
which measures water efficiency), and then formulate water
consumption in a data center.

Direct water. Data centers deploy one or more of several
heat removal methods, among which cooling towers are
widely used in large data centers [5], [10]. Cooling tower
consists of two water loops: chilled water loop and con-
denser water loop. While chilled water loop recirculates
between chillers and server rooms, condenser water evapo-
rates and recirculates between chillers and cooling towers.
Cooling towers consume water in two major ways: evapora-
tion (rejection of heat into the environment) and “blown
down” (to keep the salt concentration of condenser water at
a low level). Given a cooling tower, direct WUE at time t at
data center i is denoted by �i;DðtÞ. In general, direct WUE
can be directly measured in realtime, and some data centers
have been periodically reporting direct WUE for public
access (e.g., dashboard of Facebook, eBay [7], [8]).

Indirect water. Electricity production accounts for the
largest water withdrawal among all sectors in the US
[38], [39]. While not all the water withdrawal evapo-
rates/loses (hence considered as “consumed”), and a
small portion of electricity is produced through water-
free renewable sources (e.g., wind, solar PV), the national
average water consumption for electricity production in
the US still reaches 1.8 L/kWh, even without considering
hydroelectricity2 which itself is a huge water consumer
[10]. Water efficiency for electricity production is quanti-
fied in terms of Energy Water Intensity Factor (EWIF),
which measures the amount of water consumption per
kWh electricity. Table 2 shows the EWIF of several com-
mon energy fuel mixes.

Based on [4], we use the following formula to calculate
the grid power’s water efficiency:

�i;IðtÞ ¼
P

k qi;kðtÞ � �i;kP
k qi;kðtÞ

; (2)

where qi;kðtÞ denotes the amount of electricity generated
and �i;k denotes EWIF for fuel type k in data center i.

Water usage efficiency. To assess the water usage efficiency
for data center operation, an emerging metric, called WUE,
was recently developed by The Green Grid [10]. At a high
level, WUE is the ratio of water consumption to IT equip-
ment energy, where water consumption includes both
direct and indirect water consumption (i.e., water evapo-
rated/“lost” for on-site data center cooling and off-site elec-
tricity production at power plants [39]).

Now, we formulate the water consumption at time t for
data center i as follows

wiðtÞ ¼ �i;DðtÞ � piðtÞ þ �i;IðtÞ � ½giðtÞ � piðtÞ � riðtÞ�þ; (3)

where piðtÞ is the server power, �i;DðtÞ denotes the direct on-
site WUE for cooling system, �i;IðtÞ is the EWIF calculated
based on (2), giðtÞ is the PUE.

Spatio-temporal diversity of WUE. WUE (both direct and
indirect) shows spatial and temporal variation. For exam-
ple, indirect WUE is location-specific [10]: different states in
the US demonstrates significant variation in EWIF because
of different energy fuel mixes and/or cooling systems at
power plants. Direct WUE also varies by location, as corrob-
orated by observing direct WUE values at two data centers
of Facebook [8]. Temporal variation of EWIF can be seen in
Fig. 1b: it is evident that energy fuel mix is time-varying
and hence different amounts of water are consumed at dif-
ferent times for the same amount of electricity. Direct WUE
is also time-varying because of non-stationary outside tem-
peratures for cooling tower locations [5].

� Electricity cost. We denote the electricity price for data
center i at time t by uiðtÞwhich may change over time/loca-
tions. We can express the incurred electricity cost at data
center i during time t as:

eiðtÞ ¼ uiðtÞ � ½giðtÞ � piðtÞ � riðtÞ�þ; (4)

where giðtÞ denotes the PUE of data center i.
� Carbon emission. A data center incurs carbon emission

embedded in electricity production [4]. Like EWIF, the aver-
age carbon emission rate of data center i can be calculated
based on the weighted contribution from each fuel type
used in electricity generation of the grid [4]. Table 2 lists the
carbon emission rates of several common energy fuel mixes.

Now, we express the carbon footprint (ignoring negligi-
ble carbon emission from on-site renewable energy genera-
tion) of the data center i at time t as

ciðtÞ ¼ fiðtÞ � ½gi � piðtÞ � riðtÞ�þ; (5)

where fiðtÞ is the carbon emission rate [4] converting elec-
tricity usage to carbon emission and has a unit of g/kWh.

TABLE 2
EWIF and Carbon Emission Rate of Common Electricity Generation Methods [34], [35], [36]

Fuel Type Renewable Nuclear Thermal Imports Hydro

EWIF (L/kWh) 0.225 2.27 1.13 1.8 78.9 (or 0 if excluded)
Carbon (g/kWh) 22.5 15 766 562 13.5

Fig. 1. Fuel mix and water/carbon efficiency [40].

2. Hydroelectricity is often excluded in the assessment of grid’s
water efficiency, because water is mostly consumed due to indirectly
expedited surface water evaporation during its generation.
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3.2 Problem Formulation

In this section, the optimization objective and constraints
are first specified, and then the problem formulation for
online batch job scheduling is presented.

Objective. The optimization objective is to minimize total
(operational) cost: electricity cost, water consumption and
carbon emission, while ignoring capital costs (e.g., cost for
building data centers, installing renewal generators and so
on) that are orthogonal to our study. As shown in Fig. 1b,
carbon emission rate (similarly, electricity cost efficiency,
albeit not shown) and water efficiency are not aligned: low-
carbon electricity may not be water-efficient. Thus, there
exists an inherent tradeoff among electricity cost, carbon
emission and water consumption. In other words, these
three metrics cannot be optimized simultaneously, and
hence as in the existing literature [1], [4], we construct a
parameterized total cost function as follows

gðaðtÞ;mðtÞ; sðtÞÞ ¼
XN

i¼1

eiðtÞ þ hw � wiðtÞ þ hc � ciðtÞ½ �; (6)

where aðtÞ ¼ ða1ðtÞ; . . . ; aNðtÞ), mðtÞ ¼ ðm1ðtÞ; . . . ;mNðtÞ),
and sðtÞ ¼ ðs1ðtÞ; . . . ; sNðtÞ) are the decision variables repre-
senting geographic workload distribution, number of serv-
ers, and server speed settings, respectively. Moreover,
hw � 0 and hc � 0 are weighting parameters for water con-
sumption and carbon emission relative to the electricity
cost. Such a multi-objective formulation is common in the
literature (e.g., [4] combines electricity cost, carbon emission
and delay). Our optimization objective is to minimize the

long-term average cost expressed as �g ¼ 1
K

PK�1
t¼0 gðtÞ, where

K is the total number of time slots in the period of interest.
Constraints. We list the constraints on scheduling deci-

sions as follows. First, at any time slot t, the number of avail-
able servers to process the batch jobs needs to satisfy

0 � miðtÞ � MiðtÞ; (7)

where MiðtÞ is the total number of servers excluding those
allocated to interactive workloads. The server can only
select one of the supported speeds:

siðtÞ 2 Si ¼ fsi;0; si;1; . . . ; si;Ki
g: (8)

We also need to guarantee that batch jobs will be eventually
processed (without dropping):

aðtÞ ¼
XN

i¼1

aiðtÞ; 8 t; (9)

�ai < �bi; 8 i (10)

biðtÞ ¼ miðtÞ � siðtÞ; 8 i; t; (11)

where �ai ¼ 1
K

PK�1
t¼0 aiðtÞ and �bi ¼ 1

K

PK�1
t¼1 biðtÞ are the long-

term average workload arrival and allocated server capacity
in data center i, respectively, and the constraint (11) states
the relation between the processed batch jobs and data cen-
ter capacity provisioning. Note that although we do not
explicitly incorporate the average delay into the constraints,
WACE provides an upper bound on the maximum queue
length (details available at [54] which is omitted for brevity),
translating into an average queueing delay guarantee.

Algorithm 1.WACE

1: At the beginning of each time t, observe the data center state
information riðtÞ, �i;DðtÞ, �i;IðtÞ, fiðtÞ and uiðtÞ, for
i ¼ 1; 2; . . . ; N and t ¼ 0; 1; 2; . . . ;K � 1

2: Choose aðtÞ;mðtÞ; sðtÞ subject to (7), (8), (9), (11) to minimize

P2 : V � gðaðtÞ;mðtÞ; sðtÞÞ �
XN

i¼1

JiðtÞ � biðtÞ

þ
XN

i¼1

JiðtÞ � aiðtÞ
(14)

3: Update the batch job queue JiðtÞ according to (15).

Problem formulation. We present an offline problem for-
mulation for batch job scheduling as follows

P1 : min
D

�g ¼ 1

K

XK�1

t¼0

gðaðtÞ;mðtÞ; sðtÞÞ (12)

s:t:; constraintsð7Þ; ð8Þ; ð9Þ; ð10Þ; ð11Þ; (13)

where D represents a sequence of decisions, i.e., aðtÞ;mðtÞ;
sðtÞ, for t ¼ 0; 1; . . . ; K � 1, which we need to optimize.
Clearly, the optimal offline solution to P1 provides the low-
est average cost. However, such a solution requires com-
plete offline information (i.e., workload arrivals, direct
WUE, EWIF, carbon emission rate, on-site renewables and
electricity prices) throughout the entire time horizon, which
is challenging, if not impossible, to obtain in practice. There-
fore, we resort to an online algorithm that is implementable
based on the currently available information at the begin-
ning of each time t.

3.3 WACE

We now present an online batch job scheduling algorithm,
WACE, which is proved to yield a close-to-minimum cost
compared to the optimal algorithm with lookahead infor-
mation. To save space, the performance analysis of WACE
is presented in [54] which follows sample-path Lyapunov
optimization [41].

Batch job decisions are linked together across different
time slots through the long-term constraint (10). Thus, it is
challenging to make online decisions without knowing
the future. Here, we propose an online algorithm that lever-
ages the recently-developed Lyapunov technique [41]. Spe-
cifically, we replace the long-term constraint (10) with a
batch job queue, and incorporate the queue information
into scheduling decisions. Intuitively, with a larger queue
length, more resources should be allocated to the data cen-
ter (e.g., increasing number of server and/or server speed),
and vice versa. As described in Algorithm 1, we incorporate
the queue length information into the objective function
to dynamically determine the balance between clearing
queue backlogs (i.e., delay) and cost minimization. With an
initial empty queue Jið0Þ ¼ 0, the job queue is updated as
follows

Jiðtþ 1Þ ¼ ½JiðtÞ � biðtÞ�þ þ aiðtÞ; (15)

where ½��þ ¼ maxf�; 0g, aiðtÞ quantifies the batch job arrivals,
and biðtÞ indicates the amount of processed batch jobs. In
Algorithm 1, we use a control parameter V � 0 (denoted as
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cost-delay parameter), which can be tuned to trade the
batch job queueing delay for cost i.e., how much we shall
emphasize the cost minimization problem P1, compared to
the long-term delay performance. In particular, when the
value of V is smaller, the data center operator follows (10)
more closely, therefore resulting in higher cost but a lower
delay. On the other hand, with larger value of V , data center
operator focuses more on minimizing the cost, suppressing
the inclusion of the queue length in P2. We will further
examine the effect of V in the simulation. Note that, in Algo-
rithm 1, the load balancing decision aðtÞ is following the
rule of “joining the shortest queue” to balance the queue
length (and hence queueing delay) across data centers:
WACE routes incoming batch jobs to the data center with
the shortest queue length, thereby prevents the data center
with high job queue from increasing further.

4 PERFORMANCE EVALUATION

In this section, we present trace based simulation studies of
geo-distributed data centers to validate our analysis and
evaluate the performance of WACE. First, we present the
data used, and then we present the simulation results.

4.1 Data Sets

We consider four geo-distributed data centers located at:
Mountain View (CA), Council Bluffs (IA), Northlake (IL),
and New York (NY). The number of servers and peak
power of each data center are given in Table 3. By default,
PUE of each data center is set to 1:2. Although we have cho-
sen the continental US for our study due to the availability of
energy fuel mix and electricity price information, our study
is generalizable to the globe, too. Each server has 15 discrete
speed levels, uniformly ranging from 1:6 to 3 GHz, and the
normalized service rate ranges from 5:3 to 10 jobs per hour,
where each “job” represents a unit of computing workloads.
We model the power consumption of the servers according
to (1). The default weighting parameters for water consump-
tion and carbon emission in (6) are set to hw ¼ 25 and
hc ¼ 0:06 respectively to have water and carbon cost compa-
rable to electricity cost. The default average delay require-
ment for batch jobs is 5 hours. The total simulation period is
1 year and duration of each time slot is set to 1 hour.

� Workload trace. The batch workload traces for our simu-
lations are taken from the research publication [42] and
originally profiled from two real-world data center traces:
Microsoft Research (MSR, which we will use as the default
batch workload) and Hotmail (used for robustness study).
Due to the lack of yearly traces, we repeat both these traces
by adding 30 percent random noises, extend them to one
year, and scale them for our data center setting. On average,
the default amount of batch workloads is 25 percent of the
total maximum capacity. We profile the HTTP server usage
in Florida International University throughout 2012 and use
the scaled-up trace as our interactive workload, with an
average utilization at 15 percent of the total maximum
capacity. By default, the total interactive workload is dis-
tributed to data centers in proportion to their maximum
server capacities. Fig. 2 illustrates a snapshot of the MSR,
Hotmail and FIU workload traces, where the workloads are
normalized with respect to the total maximum capacity of
the four data centers.

� Electricity price and renewable energy. We obtain the
hourly electricity price for three trading nodes closest to
data centers in CA, IA and NY for the year of 2012, while
we collect electricity prices for the data center in IL from
[43]. We obtain from [40] four sets of the hourly renewable
energies (generated through solar panels and wind tur-
bines) during the year of 2012, and scale them proportion-
ally such that on-site renewable energy supply takes up
approximately 10 percent of the peak power consumption
of all data centers.

� Others. We use the data presented in [8] to calculate the
direct water consumption in CA data center. For data centers
at IA, IL and NY, we use the average direct WUE of 2.52, 0.2
and 0.49 L/kWh, respectively, and vary them according to
outside wet bulb temperature to incorporate temporal diver-
sity. We use the state-level average EWIF (listed in Table 4)
and vary it according to energy fuel mix data collected from
[40]. A sample 48 hour energy fuel mix data is given in
Fig. 1a. Due to the unavailability of hourly fuel mix data of
IA, IL and NY, we adopt the approach in [4] and use the
monthly fuel mix data to calculate monthly hourly EWIF
and carbon emission rates, and add 15 percent randomness
to generate the yearly data for these three data centers.

Due to unavailability of access to data center informa-
tion, we collect the trace-data from various sources. How-
ever, since our collected data appropriately represents the
variation of workloads, electricity price, water efficiency
and carbon rate, our purpose of evaluating WACE is served.

4.2 Results

We drive the simulation using the above trace data.
The water consumption, carbon emission and electricity
cost are recorded as outputs of the simulation. We
compare the performance of WACE algorithm against

TABLE 3
Data Center Configuration

DC
Location

# of Servers
(in thousands)

Peak Power
(MW)

CA 100 21
IA 90 19
IL 60 13
NY 70 15

Fig. 2. Workload traces [42].

TABLE 4
Average Direct WUE and EWIF [10]

DC Location CA IA IL NY

EWIF (L/KWh) 0.19 0.45 3.97 3.22
Direct WUE (L/KWh) 0.7 2.52 0.2 0.49
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three benchmark algorithms, i.e., SAVING, CARBON and
ALWAYS. We also present insights on how WACE appro-
priately captures spatio-temporal variation to outperform
the benchmark algorithms.

Next, we provide a brief outline of the algorithms that we
compare WACE with.

� SAVING. We consider here an online algorithm that
solely minimizes the electricity cost while discarding water
consumption and carbon emission. Essentially, SAVING is
a variant of WACE by setting the water and carbon weights
to zero.

� CARBON. CARBON only optimizes the carbon emis-
sion while ignoring electricity cost and water consumption.
It applies WACE with an “infinite” weight for carbon
footprint.

� ALWAYS. This algorithm processes the workloads as
soon as possible and hence avoids incurring a large delay.
By default, ALWAYS equally distributes the workloads to
data centers.

4.2.1 Performance Comparison

Fig. 3 shows the comparison between WACE and three
benchmark algorithms, i.e., ALWAYS, SAVING and CAR-
BON, in terms of the average cost, average delay, average
water consumption and average carbon emission per time
slot. In Fig. 3, the average value is obtained by summing up
all the values from time 0 to time t and then dividing the
sum by tþ 1. Also, in our study the average hourly cost,
water consumption and carbon emission represent the sum
for all the data centers, while average queuing delay is aver-
aged over all the data centers. For WACE, SAVING and
CARBON, we choose V to be 210, 55, and 580, respectively.
Fig. 3a demonstrates that WACE is more cost-effective com-
pared to the three benchmarks with a total cost saving by
more than 20, 11, and 10 percent, respectively, although it
can be seen from Fig. 3b that the queuing delay is increased
by approximately 1 hour for WACE compared to bench-
marks, which is typically tolerable for batch jobs. Due to its
greedy nature, ALWAYS has the lowest delay of 1 hour, but
it has the highest cost. From Figs. 3a and 3b, it is evident
that WACE takes better advantage of delay tolerance of
batch jobs and is therefore capable of achieving lower aver-
age total cost by processing batch jobs during time slots

when combined cost factor is lower (i.e., incorporating elec-
tricity price, water efficiency and carbon emission rate).
Figs. 3c and 3d compare water consumption and carbon
emission, respectively, between WACE and three bench-
mark algorithms. It demonstrates the benefits of WACE in
terms of sustainability, while incurring a minor delay per-
formance degradation. Note that WACE achieves lower
carbon emission than CARBON in Fig. 3d because of the
choice of control variable V . In particular, CARBON has
an average delay of three hours while batch jobs experi-
ence an average delay of five hours in WACE. Thus,
WACE can better take advantage of the spatio-temporal
diversity of carbon/water efficiency and even result in a
lower carbon footprint than CARBON.

4.2.2 Impact of Average Delay

To enable a fairer comparison, we show the performance of
WACE, SAVING and CARBON under the same average
delay. ALWAYS is not shown here because it does not pro-
vide the flexibility of trading delay for cost saving. We vary
the delay constraint from 2 time slots to 12 time slots to
show the corresponding average cost, electricity cost, water
consumption and carbon emission in Fig. 4. We can see
from Fig. 4a that the average total cost decreases for all the
algorithms with relaxed delay constraint, with WACE
achieving the lowest average total cost among the three
algorithms. With increased delay constraint, WACE per-
forms significantly better than other two algorithms. More-
over, note that increasing the delay beyond 10 hours does
not considerably improve the cost performance for any of
the algorithms. Fig. 4b shows similar pattern in terms of
water consumption. We can observe that WACE achieves
lowest water consumption among the three algorithms

Fig. 3. Comparison of different algorithms.
Fig. 4. Impact of average delay on different costs.

Fig. 5. Impact of cost-delay parameter V .
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since it considers water optimization, while the other two
algorithms neglect water efficiency (which differs from
electricity cost/carbon efficiency). Figs. 4c and 4d deliver
similar messages in terms of electricity cost and carbon
emission, respectively, but with SAVING achieving lowest
electricity cost and CARBON having lowest carbon emis-
sion, which are expected from the operating principle of
these algorithms. From Fig. 4, we observe that it is not possi-
ble to simultaneously optimize electricity cost, water con-
sumption and carbon emission, because the efficiencies of
these three metrics are not strongly correlated. A similar
result was reported by [4]: electricity cost and carbon foot-
print cannot be minimized at the same time. Hence, it is
important to properly choose weighting parameters for
water and carbon footprints, such that neither sustainability
nor economic benefit is considerably compromised.

4.2.3 Impact of Cost-Delay Parameter V

We now show how the cost-delay parameter V affects cost
and delay. Figs. 5a and 5b show the impact of V on the aver-
age hourly cost and average queueing delay, respectively.
ALWAYS is not considered here, since it does not use V in its
scheduling decision. Fig. 5a shows that for all the algorithms,
with the increase in V , the average cost decreases. In Fig. 5b,
we see that delay increases with an increase in V and the
delay increase is almost linear. The result conforms with our
analysis that with a greater V , the algorithms are less con-
cerned with the batch job queue length while caring more
about minimizing the cost. The reason is that, with a large
value of V , the weight of queue length in the optimization
objective (14) is relatively smaller, thereby equivalently mak-
ing the queueing delay less stringent.

4.2.4 Impact of Water and Carbon Weights

In this section, we show the effect of water weight ðhwÞ and
carbon weight ðhcÞ on the performance of WACE. We start
with the value zero for both the weight factors and increase
the values up to the level such that the water/carbon cost
equal to 90 percent of the total cost. We choose V appropri-
ately in each case, such that the average delay is equal to 5
hours. In Fig. 6, we show a set of figures depicting the
impacts of water and carbon weights on WACE in terms of
different costs. As we have shown that WACE cannot out-
perform electricity cost-/carbon-minimizing algorithm
SAVING/CARBON (in terms of electricity cost/carbon),
we use ALWAYS as the benchmark as it is still widely-used
in many performance-driven data centers. Figs. 6a and 6b
show that with the increase in the corresponding weighting

factors, both water consumption and carbon emission dem-
onstrate a decreasing trend. This outcome is as expected,
since the increase in the weighting factor translates into a
higher priority for the corresponding cost during the opti-
mization process. We see in Fig. 6c that, with the increase in
either water or carbon weight, electricity cost increases
because WACE schedules batch jobs to achieve low water
consumption and/or carbon emission, while giving less
attention to electricity price. Moreover, we observe that
WACE has a lower water consumption, carbon emission
and electricity cost in comparison to ALWAYS for a wide
range of water and carbon weight parameters, demonstrat-
ing that WACE can outperform ALWAYS in terms of water
consumption, carbon emission and electricity cost at the
expense of increasing delay for batch jobs.

4.2.5 Exploiting Temporal Diversity

In this section, we show how WACE exploits the temporal
variation of electricity price, WUE, and carbon rate to
achieve an overall low total cost, whereas the benchmarks
do not. As WACE takes the combination of electricity cost,
water consumption and carbon footprint into consideration
based on a parameterized cost function, we combine the
three factors into one “cost factor”, defined as “electricity
priceþ water weight� water efficiencyþ carbon weight �
carbon efficiency”, to better visualize the overall impact of
temporal diversity in hourly decisions. Fig. 7 shows a snap-
shot of 24 hour capacity provisioning and job queue lengths
with different scheduling algorithms for the data center in
CA. In Fig. 7a, we see that WACE processes more batch jobs
during time slots when the combined cost factor is compara-
tively low. However, during 12th time slot, although the
cost factor is relatively higher, WACE processes more jobs.
The reason is that, during time slot 12 the job queue length
is too large (shown in Fig. 7b), and hence serving those
backlogged jobs and reducing the queue length become
more essential than optimizing the cost due to delay perfor-
mance concerns. On the other hand, Fig. 7c shows that
ALWAYS processes jobs even when the combined cost fac-
tor is high (e.g., time slots 6, 11). The job queue for ALWAYS
is shown in 7d, which represents the dispatched batch jobs
to the data center in CA. In Fig. 7e, we see that more jobs are
processed during time slots when the electricity price is
lower (e.g., time slots 4, 10, 18), since SAVING only cares
about electricity price in its optimization. Similar pattern
can be observed in Fig. 7g for CARBON, where it is evident
that more jobs are processed at time slots with low carbon
emission rate.

Fig. 6. Impact of water and carbon weights.
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4.2.6 Exploiting Spatial Diversity

Now, we show in Fig. 8 how WACE exploits spatial diver-
sity of electricity price, water efficiency and carbon emission
rate, under the same average batch job delay of 5 hours
(except for ALWAYS). Fig. 8b shows the average amount
of batch jobs distributed among the four data centers for
four different algorithms. We see that WACE sends rela-
tively more workloads to the data centers in CA and IA
than those in IL and NY, because CA and IA have lower
combined cost factors, as seen in Fig. 8a: WACE is con-
cerned about optimizing all the three costs (electricity
cost, water consumption and carbon emission), whereas
SAVING/CARBON has a different load distribution pat-
tern because SAVING/CARBON only favors electricity
cost/carbon efficiency.

4.2.7 Sensitivity Study

We perform the following two sensitivity studies to evalu-
ate the robustness of WACE.

� Effect of interactive workload intensity. Since interactive
jobs processed by the data center limits the available server
capacity for batch jobs, the amount of interactive jobs (mea-
sured based on the peak arrival rate in terms % of total
capacity) affects the performance of batch job scheduling
algorithms. We choose the same settings as those in Fig. 3,
but vary the average intensity of interactive jobs from 0 per-
cent (i.e., no interactive jobs, only batch jobs) to 70 percent
of total capacity and observe the operational cost and delay
performance in Fig. 9. We see in Fig. 9a that with increase in
interactive job intensity, the average cost increases as
expected: increased intensity means that the data centers
process more workloads. It can be observed that, WACE
still achieves the lowest average total cost, while ALWAYS
incurs the highest cost. Fig. 9b shows the average delay per-
formance under different interactive workload intensities:

batch job delay is not affected much by the change in inter-
active job intensity. This is because, the peak load of these
two job types are often at different time slots and hence
even when the data centers process more interactive jobs,
they still have enough server capacity to schedule batch
jobs with a similar delay.

� Different workload set. We conduct our simulation using
a different workload trace—Hotmail (shown in Fig. 2),
under the same settings as those in Fig. 3. Similar to Fig. 3,
we compare the average total cost of WACE with SAVING,
CARBON and ALWAYS in Fig. 10a. We see that WACE has
a average cost 21 percent lower than SAVING, 20 percent
lower than CARBON and 30 percent lower than ALWAYS.
Fig. 10b shows the delay performance comparison of
WACE with the three benchmark algorithms, where it can
be seen that WACE has a higher average delay (approxi-
mately 1 hour), which is acceptable for batch workloads.
The results again demonstrate the capability of WACE in
fully taking the advantage of scheduling flexibility of batch
jobs to achieve a lower overall cost.

� Number of data centers. The four data centers consid-
ered in the default case is reasonable, since even leading
IT companies like Faceebook and Google have only a
handful of self-managed data centers in the US [44], [45].
Nonetheless, to evaluate WACE in larger systems, we
extend our study to more data center locations following
similar settings as in the default case. We see in Fig. 11a
that cost saving increases as we increase the number of
data center locations. Similar observation is also made in
Fig. 11b where water saving increases with the number of
data centers. The reason is that as more data centers are
included, more spatial-temporal diversities and a higher
degree of scheduling freedom can be exploited for more
cost saving.

Fig. 7. Capacity provisioning in CA.

Fig. 8. Workload distribution among data centers.
Fig. 9. Impact of interactive job.
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5 JOINT SCHEDULING OF INTERACTIVE AND

BATCH JOBS

In this section, we extend WACE to incorporate interactive
job scheduling decisions. The new online algorithm is called
WACE-J (WACE-Joint scheduling of batch and interactive
jobs). We present the model for interactive jobs, formulate
the problem, and then compare WACE-J with our previous
batch job scheduling algorithm WACE (which considers
interactive job scheduling as an external decision) through a
simulation study.

5.1 Model and Problem Formulation

Model. There are Q regional load balancers, each of which
represents a geographically-concentrated source of work-
loads and then forwards the incoming interactive workloads
to theN geo-distributed data centers. We denote the interac-
tive workload arrival rate at the qth regional load balancer by
�qðtÞ ¼ ½0; �q;max� and theworkload is dispatched to data cen-
ter i at a rate of �i;qðtÞ. We denote by mi;intðtÞ and si;intðtÞ the
number of active servers and processing speed for process-
ing interactive workloads at data center i. We include an
average delay constraint to ensure performance guarantee of
interactive workload and denote the delay threshold by dth.
As in the existing literature [1], [46], we use a M/M/1 queue
to model the service processing at each server. Specifically,
the average service delay for interactive workloads dis-
patched from load balancer q to data center i is

1

si;intðtÞ �
PQ

q¼1
�i;qðtÞ

mi;intðtÞ

þ li;qðtÞ; (16)

where li;qðtÞ is the average network latency from load bal-
ancer q to data center i which can be approximated based
on the distance [1]. As we include interactive job scheduling
as part of our decisions, the server power consumption for
processing interactive jobs pi;intðtÞ is no longer an external
variable; instead, it can be expressed as

pi;intðtÞ ¼ mi;intðtÞ

� ½ai � snii;intðtÞ �
PQ

q¼1 �i;qðtÞ
mi;intðtÞsi;intðtÞ þ p0�;

(17)

where ai is a positive scaling factor and relates the process-
ing speed to the power consumption, p0;i represents the

power consumption in idle or static state,

PQ

q¼1
�i;qðtÞ

mi;intðtÞsi;intðtÞ is the

utilization of each server in data center i. Then, the total
server energy consumption at data center i can be written in
the same form as (1), and expressions of all the three types
of costs (i.e., electricity cost, water consumption, carbon
emission) follow the same as in Section 3.1.

Problem formulation. Following Section 3.2, we present an
offline problem formulation for jointly scheduling interac-
tive and batch jobs as follows

P3 : min
D

�g ¼ 1

K

XK�1

t¼0

gðaðtÞ; �ðtÞ;mðtÞ; sðtÞÞ (18)

s:t:; constraintsð8Þ; ð9Þ; ð10Þ; ð11Þ; (19)

miðtÞ þmi;intðtÞ � Mi; 8 i; t (20)

si;int 2 Si ¼ fsi;0; si;1; . . . ; si;Ki
g; 8 i; t (21)

1

si;intðtÞ �
PQ

q¼1
�i;qðtÞ

mi;intðtÞ

þ li;qðtÞ � dth; 8 i; t (22)

XN

i¼1

�i;qðtÞ ¼ �qðtÞ; 8 q; t; (23)

where D represents a sequence of decisions, i.e., aðtÞ; �ðtÞ;
mðtÞ; sðtÞ (also including the resource management deci-
sions for interactive jobs, i.e., mintðtÞ; sintðtÞ, which are omit-
ted for brevity), for t ¼ 0; 1; . . . ; K � 1, which we need to
optimize. Compared to the problem formulation in P1 for
batch job scheduling, the additional constraints (20)—(23) in
the new formulation P3 represent: data center capacity,
server speed setting, delay performance for interactive jobs,
and no workload dropping constraints. To solve P3, we can
use the same online algorithm as presented in Algorithm 1,
with the addition that interactive job scheduling decisions
are also optimized at the beginning of each time slot. We
omit the details due to space limitations.

5.2 Evaluation

We consider the same settings as used in Section 4 and
include one regional load balancer at Denver, CO, which
forwards incoming interactive workloads to the four data
centers. For brevity, we only compare WACE-J against
WACE. Due to the explicit consideration of delay perfor-
mance constraint for interactive jobs, we modify WACE by
considering its interactive job scheduling decision as fol-
lows: first, incoming interactive jobs are distributed to data
centers in proportion to data center capacities; then, servers
run at a fixed speed (e.g., medium speed in our study) and
then choose the minimum number of servers to satisfy the
delay requirement. Fig. 12 shows the comparison in terms

Fig. 10. Comparison of under Hotmail workload.

Fig. 11. Impact of number of data centers.

Fig. 12. Comparison of different algorithmswith interactive job scheduling.
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of total cost and water consumption between WACE and
WACE-J, under the same delay requirement: average delay
of five hours for batch jobs and 100 ms for interactive jobs.
Fig. 12 shows the benefit of jointly scheduling interactive
and batch jobs in reducing cost and water consumption,
while the benefit in terms of reducing electricity cost and
carbon emission is not shown for brevity.

Next, we vary the average delay requirement for interac-
tive jobs and show how it affects WACE-J. As intuitively
expected, with a relaxed delay requirement, the total cost of
WACE-J will decrease. Figs. 13a and 13b show the effect of
delay requirement on average total cost and water con-
sumption, respectively, for both WACE and WACE-J. In
Fig. 13, we observe that WACE-J has a lower average cost
and water consumption than those of WACE: WACE-J
explicitly optimizes load distribution and capacity provi-
sioning decisions for interactive jobs, while WACE does not
utilize this opportunity and hence incurs a higher average
cost and water consumption.

6 RELATED WORK

Several prior studies have focused on identifying methods
of cost cutting while ensuring the quality-of-service at the
same time. For example, finding a balance between energy
cost of data center and performance loss through dynami-
cally provisioning server capacity has been the primary
focus of many recent studies [42], [47]. Other approaches
that are complementary to dynamic capacity provisioning
include, but are not limited to, utilizing storage devices to
reduce the operational cost of data centers [26], [48], exploit-
ing the spatio-temporal variation of electricity prices [1],
[20], [31], [46], [49], and utilizing multiple energy sources
(e.g., grid energy, on-site power generation, etc.) [50]. More-
over, there has been considerable interest in reducing car-
bon footprint through geographical load balancing or
“follow the renewables” [1], [4]. Nonetheless, none of the
existing literature discusses water consumption reduction
in data centers.

Although water consumption has been a critical issue
worth addressing, very little research effort has been dedi-
cated to improving water sustainability at data center. Most
of the current efforts on water efficiency can be viewed as
improved “engineering”: for example, installing advanced
cooling system [8], using recycled water [19], and reducing
indirect water consumption through installation of on-site
renewable energy project to scale down electricity con-
sumption [27]. Some other studies that are remotely related
to data center water consumption are: developing a dash-
board to visualize the water efficiency [51], and pointing
out the criticality of water conservation [52]. Some recent
studies [22], [23] exploit spatial diversity of water efficiency

and geographically schedule interactive workloads among
data centers to reduce water footprint, but they neglect the
temporal diversity of water efficiency, which allows new
water saving opportunities through dynamically schedul-
ing delay-tolerant jobs over time. Another work [53] prelim-
inarily addresses water footprint via online batch job
scheduling, but it only considers a single data center and
excludes interactive jobs from its decisions.

To sum up, our work extends the previous literature [4],
[22], [23], [53], and holistically minimizes electricity cost,
carbon emission and water footprint by leveraging the delay
tolerance of batch jobs and integrating spatio-temporal
diversity of data center water efficiency.

7 CONCLUSION

In this paper, we addressed the surging water footprint in
data centers. We proposed a provably-efficient online batch
job scheduling algorithm, WACE, which exploits spatio-
temporal diversity of data center water efficiency, carbon
rate and electricity price for minimizing the total cost (incor-
porating electricity cost, water consumption and carbon
emission) while bounding the average delay performance.
The software-based approach fundamentally differs from
the existing water-saving techniques that primarily focus on
improved “engineering”. We performed a trace-based sim-
ulation study to show that WACE reduces the water con-
sumption by over 25 percent and total cost by 20 percent
compared to state-of-the-art benchmarks, with an accept-
able delay increase. Finally, we extended WACE to jointly
schedule batch and interactive jobs for further water foot-
print reduction in geo-distributed data centers.
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